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Functional glycosylation in the human
and mammalian uterus

Gary F. Clark

Background: Glycosylation is the most common and structurally diverse of all the post-translational modifications
of proteins. Lipids and extracellular matrices are also often glycosylated. The mammalian uterus is highly
enriched in glycoconjugates that are associated with the apical surfaces of epithelial cells and the secretions
released by both epithelial and stromal cells. These glycoconjugates interact primarily with sperm, the
implanting embryo, the fetus, and any pathogen that happens to gain entry into the uterus. Secretions of the
endometrial glands increase substantially during the luteal phase of the menstrual cycle. These secretions are
highly enriched in glycoproteins and mucins that promote specific uterine functions.

Findings: Lectins and antibodies have been employed in the majority of the studies focused on uterine
glycosylation have employed to define the expression of carbohydrate sequences. However, while these studies
provide insight about potential glycosylation, precise information about glycan structure is lacking. Direct
sequencing studies that employ biochemical or mass spectrometric methods are far more definitive, but have
rarely been employed with uterine glycoproteins. Both lectin/antibody binding and direct carbohydrate
sequencing studies that have been focused on the mammalian uterus are reviewed. The primary functional role of
the eutherian uterus is to facilitate fertilization and nurture the developing embryo/fetus. Trophoblasts are the
primary cells that mediate the binding of the embryo and placenta to the uterine lining. In mammals that
utilize hemochorial placentation, they invade the decidua, the specialized endometrial lining that forms during
pregnancy. Trophoblasts have also been analyzed for their lectin/antibody binding as a complement to the analysis of
the uterine cells and tissues. They will also be reviewed here.

Conclusions: The functional roles of the glycans linked to uterine and trophoblast glycoconjugates remain enigmatic.

syndromes remains to be determined.

Pregnancy induced hypertension, Preterm birth

Another major question in the human is whether defects in placental or uterine glycosylation play a role in the
development the Great Obstetrical Syndromes. More recent findings indicate that changes in glycosylation occur in
trophoblasts obtained from patients that develop preeclampsia and preterm birth. The functional significance of these
changes remain to be defined. Whether such shifts happen during the development of other types of obstetrical
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Introduction

Glycosylation is a specific type of post-translational
modification of proteins, lipids and other cellular com-
ponents that is universally observed throughout the
plant and animal kingdoms [1, 2]. The plasma mem-
branes of cells, extracellular matrices and connective tis-
sues are the primary sites where abundant glycosylation
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is observed [2]. Carbohydrate sequences expressed on
the outer surfaces of cells participate in binding to other
cell types and crucial signaling events during both
physiological and pathological states [3, 4]. It is therefore
not that surprising that glycans are profusely expressed in
the mammalian uterus, an organ that must undergo many
different transformations to support fertilization and
subsequent fetal development [5, 6]. Though there is cur-
rently rather limited data available about the precise se-
quences of glycans linked to uterine glycoconjugates, the
advent of ultrasensitive mass spectrometric (MS) methods
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combined with a greater appreciation of the role of glyco-
sylation in reproduction should provide strong incentives
in the future for the glycomic analysis of cells and tissues
within this organ [7—10]. Here both classical and modern
studies focused on uterine glycosylation will be reviewed.

Glycans as essential functional groups that facilitate
reproduction

Monroy provided the first convincing evidence that carbo-
hydrate recognition is essential for sperm-egg binding.
Specifically, he proposed that polysaccharides or glycans
presented on the egg jelly coat of marine organisms were
recognized by lectin-like egg binding proteins on the sur-
face of sperm, enabling robust gamete binding [11]. This
model for specific cell-cell recognition relies on the strict
regulation of carbohydrate expression on both sperm and
eggs. The carbohydrate ligands for sperm binding must be
expressed at elevated levels on the extracellular matrix of
the egg, but not on the sperm surface where they could
interact with the lectin-like egg binding proteins on the
plasma membrane and inhibit binding. This same type of
regulation also applies to cell signaling events involving
the specific recognition of carbohydrate ligands. Expres-
sion of the carbohydrate ligand for a receptor on the same
surface as the receptor could inhibit signaling.

This logic can be directly applied to initial murine
and human sperm-egg binding, where substantial evi-
dence supports a specific carbohydrate binding specificity.
Data obtained from many different studies indicate that
the major egg binding protein on mouse sperm interacts
with triantennary and tetraantennary N-glycans termi-
nated with -linked Gal presented on the constituent gly-
coproteins that form the zona pellucida (ZP) [12-14].
Similarly, the major egg binding protein on sperm has
been proposed to recognize multivalent sialyl-Lewis™ se-
quences presented on both N- and O-glycans of ZP glyco-
proteins during initial gamete binding in humans. Clearly,
these carbohydrate ligands for murine and human gamete
binding should not be expressed on the plasma mem-
branes of mouse and human sperm. Otherwise, they could
interact with the lectin-like egg binding proteins to block
binding. Glycomic studies have demonstrated this restric-
tion in the human model. As noted previously, sialyl-
Lewis™ (sLe®) is the carbohydrate ligand on the ZP that
mediates human sperm-ZP binding [15]. However, gly-
comic analysis did not indicate the expression of sLe*
on human sperm glycans, in spite of the presence of
both highly sialylated and fucosylated glycans [16]. Evi-
dence supporting this type of restriction in other species
can be obtained in the future by performing detailed gly-
comic analyses of mature sperm and ZP glycoproteins.

It is quite easy to understand how receptor-ligand
systems involving protein-protein interactions between
different cell types could be regulated by the genome,
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but much more difficult for carbohydrate-dependent
interactions [17]. Unlike proteins, carbohydrate sequences
are assembled via a template-independent process [2].
Their synthesis relies upon the availability of specific
modification enzymes (glycosyltransferases, glycosidases),
sugar nucleotide sugars and protein substrates [2, 18, 19].
Other relevant factors include the competition for sub-
strate glycans by different enzymes, and the organization
of enzymes into complexes or organelles like the Golgi
apparatus [20, 21].

Precisely how the expression of complex glycans is
regulated remains an enigma. Nonetheless, recent evi-
dence indicates that glycans have been employed as
functional groups since the initiation of life on this
planet. The synthesis of carbohydrate sequences has
been documented in Archaean prokaryotes that date
back more than 3500 mya [22]. Recent findings suggest
that glycosylation was likely essential to enable these an-
cient organisms to survive the very harsh environmental
conditions that existed during the early stages of earth’s
history. The functional roles for glycans has greatly ex-
panded over the eons. Evidence for sexual reproduction
has been identified in the fossils of bangiacean red algae
(Bangiomorpha pubescens) that date back 1200 mya
[23]. These results indicate that the pathways for regu-
lating the expression of carbohydrate functional groups
and their cognate receptors on different gametes have
likely existed for millennia. The fact that they are still
employed in humans confirms that the functional roles
requiring carbohydrate recognition remain under posi-
tive selection.

Abnormal glycosylation contributes to the develop-
ment of many different pathological states in humans
[2]. The Great Obstetrical Syndromes (preterm labor,
preeclampsia, intrauterine growth restriction, preterm
premature rupture of membranes, late spontaneous abor-
tion, abruptio placentae) remain the issues of foremost
concern for clinicians devoted to the delivery of healthy
infants [24-28]. All of these pathological states are clearly
associated with disorders of deep placentation [29].
Whether any of these syndromes are the result of de-
fective uterine glycosylation has yet to be determined.
Unlike genetic or epigenetic changes, subtle shifts in
glycosylation are completely invisible to the current
methods of genomic analysis. However, they can be
readily revealed by careful glycomic analysis of glyco-
conjugates and whole cell types isolated from normal
and pathological tissue samples [7, 30, 31]. The great
majority of the studies focused on analyzing uterine
glycosylation have been performed with lectins and
carbohydrate-specific antibodies. However, ultrasensi-
tive MS analyses will be essential to precisely define
discrete differences in glycosylation between normal
and pathological states in the human uterus that
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could result in the development of these obstetrical
syndromes [7-10]. Studies focused on the expression
of glycosyltransferase genes in the uterus will also be
reviewed.

Analysis of human uterine glycoconjugates with
carbohydrate binding proteins

The human uterus is highly enriched in glycoconjugates
that are associated with the apical surfaces of epithelial
cells and the aqueous secretions released by both epithe-
lial and stromal cells. These glycoconjugates interact pri-
marily with sperm, the implanting embryo, the fetus,
and any pathogen that gains entry into the uterus. Secre-
tions of the endometrial glands increase substantially
during the luteal phase of the menstrual cycle. These se-
cretions are highly enriched with growth factors and nu-
trients that support the implantation of the embryo and
its subsequent development into a viable fetus.

Glycosylation in the human uterus has been studied
primarily by employing lectins and carbohydrate-specific
antibodies [32, 33]. This approach was initially necessary
because of the limited amount of available tissue/cells
and the relative insensitivity of the methods of carbo-
hydrate structural analysis. Lectins are proteins that
recognize and bind to carbohydrate sequences that ex-
press specific structural features [34]. Many lectins with
different carbohydrate binding specificities have been iso-
lated and purified to homogeneity since 1970 [34-38].
The major lectins employed to profile glycosylation in the
many different human cell types are shown in Table 1.

Though lectins are useful tools, they cannot provide
precise details about glycan expression, due to their
potential for cross reactivity with unknown carbohy-
drate sequences and the enormous structural diversity
of glycans, especially those that possess multiple non-
reducing terminals due to branching. However, when
employed in conjunction with ultrasensitive MS se-
quencing tools, lectins can be very useful for precisely
defining structure-function relationships. The unam-
biguous identification of the glycoprotein ligands for
DC-SIGN in human seminal plasma could only be ac-
complished by employing lectin affinity chromatography
in conjunction with glycomic and proteomic analyses, as
demonstrated in a recent study [39].

Differential agglutination of human tumor cells com-
pared to normal progenitor cells by wheat germ agglu-
tinin (WGA) was initially reported in 1965 [40]. This
observation led many investigators working in cancer
research to employ lectins in their comparative studies
of normal versus tumorigenic tissues and cell types.
This interest in differential glycosylation during tumori-
genesis also stimulated many investigators to define the
carbohydrate binding properties of the lectins shown in
Table 1.
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Many different lectin binding studies have been per-
formed on tissue samples obtained from the human
uterus and cervix (Table 2). In an early study, Rowinski
and coworkers reported that fibroblasts obtained from
the normal human cervix were not agglutinated by the
lectin Concanavalin A (ConA). By contrast, fibroblasts
underlying different cervical cancer lesions became ag-
glutinated with lower concentrations of this lectin as the
tumor progressed [41]. Kluskens et al. [42] analyzed the
binding of 7 FITC-labeled lectins to proliferative, hyper-
plastic and cancerous endometrial samples. They were
able to define differences in the binding of WGA and
ConA to these samples. The sialic acid binding lectin
from Limulus polyphemus was employed to investi-
gate the changes in the expression of sialylated glyco-
conjugates in human endometrial adenocarcinoma after
treatment with medroxyprogesterone acetate [43]. They
observed specific quantitative and qualitative differences
in lectin binding after therapy with this hormone.

Damjanov and coworkers investigated the binding of a
panel of 13 different fluoresceinated lectins to normal
human endocervical and uterine epithelium at different
stages of the menstrual cycle [44]. They reported that
MPA, UEA-I, SBA and VVA were selectively bound to
the endocervix but not the endometrium, indicating that
lectins could be employed to distinguish between epithe-
lia at different uterine sites. They also demonstrated that
these variations were independent of the menstrual cycle
and blood group status. Bychkov and Toto employed the
avidin-biotin-peroxidase method to analyze the binding
of PNA, UEA-1, WGA and ConA to samples of endo-
metrium during different stages of the menstrual cycle
and early pregnancy [45]. They reported very strong
binding of PNA and UEA-1 to apical cells during early
pregnancy, but only weak binding during the prolifera-
tive and secretory phases. WGA and RCA-1 displayed
marginal binding to glandular epithelium during the
proliferative phase that increased substantially during
the secretory phase. This same investigative group
employed WGA and PNA as probes to analyze normal,
dysplastic and neoplastic cervical epithelium [46]. They
observed minimal binding of these lectins to normal
squamous epithelium which increased substantially as
the lesions became more malignant.

Wan and coworkers used a panel of nineteen FITC-
labeled lectins to define the glycosylation of the epi-
thelial surfaces in the human female reproductive
tract including the uterus and cervix. They concluded
that the distribution of galactosyl residues displayed
variations among the organs, unlike mannosylated and
fucosylated residues that were more evenly expressed [47].
Tang studied the binding of UEA-1, GS-I (isolectin B4),
and DBA to normal and malignant cells of the uterine
endometrium [48]. DBA binding decreased while UEA-1
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Table 1 Binding specificities of lectins commonly employed to analyze glycosylation

Abbreviation Source Carbohydrate Binding
AAA Anguilla anguilla Fucosylated type 1 chains (H1, Lewis®®)
ALA Aleuria aurantia Fucose linked a1-6 to N- acetylchitobiose core of N-glycans
BPA Bauhinia purpurea Gal1-3GalNAc, a-linked GalNAc
Con A Concanavalia ensiformis Terminal o-linked mannose; high mannose and biantennary type N-glycans
DBA Dolichos biflorus A blood group antigen Terminal a/-linked GalNAc
DSA Datura stramonium N-acetyllactosamine, Linear polylactosaminoglycans
ECA Erythrina cristagalli GalB1-4GIcNAc (lacNAc)
E-PHA Phaseolus vulgaris Biantennary/triantennary bisecting type N-glycans
GNA Galanthus nivalis High mannose type N-glycans primarily via terminal Mana1-3Man
GS-l Griffonia simplicifolia Gala1-3/4Gal, GaINAco1-3Gal
GSAI Griffonia simplicifolia Terminal o/B-linked GIcNAc
LBA Phaseolus lunatus A blood group (GalNAca1-3[Fuca1-2]Gal)
LCA Lens culinaris N-glycans with fucose linked a1-6 to the N-acetylchitobiose core
LEA Lycopersicon esculentum Polylactosamine sequences
LTA Tetranogolobus purpureus H2 antigen, Lewis®, Lewis”
L-PHA Phaseolus vulgaris B-1-6 linked lacNAc in tri-/tetraantennary N-glycans
MAL-II Macckia amurensis NeuAca2-3GalB1-4GIcNAc
MPA Maclura pomifera Tn antigen (a-linked GalNAc) or T antigen (GalB1-3GalNAc)
PNA Arachis hypogaea GalB1-3GalNAc
PSA Pisum sativum N-glycans bearing fucose linked a1-6 to the N-acetylchitobiose core
PWM/PAA Phytolacca americana Branched polylactosaminoglycans
RCA-I Ricinus communis GalB1-4GIcNAc > Gal1-3GIcNAC
RCA-II Ricinus communis Terminal -linked Gal or GalNAc
SBA Glycine max a-linked GalNAc > a-linked Gal
SJA Sophora japonica o/B-linked GalNAc > a/b-linked Gal
SNA Sambucus nigra NeuAca2-3GalB1-4GIcNAc
STA Solanum tuberosum Polylactosamine sequences
UEA-1 Ulex europaeus-1 H2 antigen (Fuca1-2GalR1-4GIcNAC) Lewis”
WA Vicia villosa GalNAca1-Ser/Thr and GalNAca1-3Gal31-
WFA Wisteria floribunda GalNAca1-6GalB1-, GalNAca1-3GalR1-
WGA Triticum vulgaris Multivalent terminal NeuAc, polylactosamine sequences
SWGA Succinylated WGA Polylactosamine sequences

binding increased on tumorigenic luminal cells com-
pared to normal progenitor cells. Griffin and Wells
employed a panel of eleven biotinylated lectins to
compare the glycosylation of normal cervical glands
for comparison with cervical glandular intraepithelial
neoplasia and invasive adenocarcinoma [49]. Foster
and coworkers analyzed the binding of an extensive
panel of lectins to define changes in glycan expression
that accompanied the transition from normal to can-
cerous lesions in human cervical epithelium [50].
They suggested that the expression of novel carbohy-
drate sequences by cancer cells could substantially
promote their invasion and dissemination.

Nagai and associates investigated the binding of UEA,
DBA, ConA and PHA to normal and neoplastic glandu-
lar epithelium from the human endocervix and endo-
metrium [51]. They reported that the intensity and
staining pattern of lectin binding were useful for differ-
entiating between endocervical and endometrial epithe-
lium derived from either normal or neoplastic tissue.
The effect of hormonal cycling on the glycosylation of
the human oviduct has been studied by employing five
horseradish peroxidase-labeled lectins (PNA, SBA, DBA,
WGA, ConA, LTA, UEA-I) [52]. Substantial losses in
the binding of DBA, WGA and ConA lectins was ob-
served in postmenopausal women compared to the
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Table 2 Lectin binding to human uterine tissues

Tissue/cell type® Lec tins Employed Cancer status® Ref.
U, C ConA N, M 42
E Limulus polyphemus M 43
U, C Panel of 13 lectins N 44
E PNA, UEA, WGA, ConA N 45
C WGA, PNA N, M 46
U, C Panel of 19 lectins N 47
E UEA-1, GS-I, DBA N, M 48
C Panel of 11 lectins N, M 49
C Panel of 12 lectins N, M 50
C UEA, DBA, ConA, PHA N, M 51
O PNA, SBA, DBA, WGA, N 52
ConA, LTA, UEA

U PNA, ECA N 53
C PWM, WGA N, M 54

2Abbreviations: U uterus, C cervix, E endometrium, O oviduct
N Normal, M, Malignant

menstruating women. Argueso et al. employed PNA
and ECA to analyze the expression of T antigen and
N-acetyllactosamine in the human mucin MUC5B during
the menstrual cycle [53]. This investigative group reported
that the expression of these sequences increased steadily
up to midcycle and then dramatically declined by the end
of the cycle.

PWM and WGA have recently been employed to
analyze the expression of glycans in the human uter-
ine cervix and cervical lesions [54]. Enhanced binding
of PWM was observed in squamous carcinoma com-
pared to premalignant lesions (premalignant cervical
intraepithelial neoplasia grades 1-3) and normal cervical
epithelium. By contrast, the binding of WGA uniformly
decreased as the cancerous lesions became more ag-
gressive. Analysis of cervical lesions by lectin blot and
enzyme-linked lectin assay (ELLA) also indicated de-
creased sialylation and fucosylation of cancerous cer-
vical lesions compared to normal epithelium [55].

Analysis of mammalian uterine glycosylation with
carbohydrate binding proteins

The interaction of lectins with uterine tissues has also
been studied in many other non-human species (Table 3).
Roberts and coworkers isolated a plasma membrane frac-
tion from the luminal surface of the pig uterus during the
estrous cycle and early pregnancy [56]. These investigators
separated the membrane glycoproteins in this fraction by
2-D gel electrophoresis and stained them with radioiodi-
nated ConA and RCA-I. However, no major changes in ei-
ther protein expression or glycosylation was detected
during either the estrous cycle or early pregnancy with
these specific lectin probes [56].
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Table 3 Lectin and antibody binding to mammalian uterine

tissues
Tissue type® Lectins/Antibodies Animal (species) Ref.
u ConA, RCA-I Pig (Sus scrofa) 56
U, o Panel of 20 lectins Mouse (Mus musculus) 57
U, 0 Panel of 11 lectins, Monkey (Cebus apella) 58
2 antibodies

U, P Panel of 24 lectins ~ Wallaby (Macropus eugenii) 59
E Panel of 14 lectins Cat (Felis catus) 60
E Panel of 20 lectins Rat (Rattus norvegicus) 61
E UEA-1, HPA, WGA Dog (Canis familiaris) 62
E HPA, WGA, UEA-, Dog (Canis familiaris) 63

SBA, PNA, LCA
U, P PNA, MPL, WGA, Dog (Canis familiaris) 64

DBA, SBA, RCA-I
E PNA Dog (Canis familiaris) 65
U GSH Mouse (Mus musculus) 66

2Abbreviations: U uterus, C cervix, E endometrium, O oviduct, P placenta

In 1983, Damjanov and coworkers employed a panel
of fluorescein-conjugated lectins to probe the luminal
epithelium lining the murine oviduct and uterus [57].
They were able to demonstrate that WGA, BPA, RCA-I,
MPA and UEA-1 displayed differential binding to the
epithelial surface of the pregnant versus non-pregnant
uterus. This differential binding was also regionally spe-
cific with WGA, indicating that changes in the binding
of RCA-I, MPA and WGA delineated pregnancy-related
changes in the distal oviduct and colliculus tubaris.
WGA could also distinguish pregnancy related changes
in the proximal oviduct. UEA-I alone reacted exclusively
with the epithelium of the non-pregnant uterus. RCA-II
reacted preferentially with the epithelium of the oviduct
and uterus as compared with its weak reactivity with the
stroma. Two lectins (PSA, LCA) reacted selectively with
stromal cells of the uterus and oviduct [57].

Aplin and coworkers analyzed the expression of
eleven different lectins and two monoclonal antibodies di-
rected against carbohydrate sequences (keratan sulfate,
sialyl-Tn antigen) to investigate glycan expression in the
oviduct and the endometrium during the luteal phase of
Cebus apella, a New World monkey [58]. Jones et al.
recently employed a panel of twenty-four different lectins
to investigate the glycosylation of the placenta and the
uterus in a marsupial, the tammar wallaby Macropus
eugenii [59]. Feline decidual cells displayed weak bind-
ing for GS-I, ConA, DBA, DSA, PNA, RCA-I, SBA
and SJA in another study [60]. ConA, LCA, SNA,
RCA-I, PNA, SBA and HPA were among the lectins
that were shown to bind to normal rat endometrium
[61]. Several groups have analyzed the binding of a
panel of lectins to canine endometrial mucosa that in
some cases displayed variation depending on the stage
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of presentation (immature, oestrus, young anoestrus, aged
anoestrus) and disease status [62—65]. Georgiades and co-
workers analyzed the binding of GS-I to mouse decid-
ual stromal cells during pregnancy. They reported
staining of these cells with GS-I in the venous sinus-
oid area of the decidual basalis by embryonic day 7.5
of pregnancy and in the entire basalis by embryonic
day 10.5 and afterwards [66].

Biochemical and MS analyses of uterine glycoconjugates
in the human and mouse

Though lectins are useful for analyzing the glycosyla-
tion of uterine surfaces, they are not nearly as powerful as
carbohydrate sequencing tools involving biochemical and
MS approaches. Yurewicz and Moghissi isolated sixteen
different O-glycans from a pool of human midcycle
cervical mucin samples [67]. These investigators sub-
sequently labeled these oligosaccharides with tritium
at their reducing ends, enabling them to be sensitively
detected during the procedures that enabled their se-
quence to be defined. Analysis of the neutral O-glycans
yielded evidence for the existence of core 2 type O-
glycans terminated with H type 2, Lewis*?, and potential
Lewis"'? sequences [68]. A core 2 O-glycan terminated
with either sialyl Lewis™ and/or sialyl Lewis® was the most
unusual oligosaccharide revealed during the sequencing of
the sialylated fraction [69]. A detailed glycomic analysis of
human cervical mucins expressed during the menstrual
cycle was more recently performed by employing ultra-
sensitive MS methods [70]. At least 50 different neutral,
sialylated and sulfated O-glycans were detected. The
previous findings reported by Yurewicz and Moghissi
were confirmed during this study [68, 69]. Hansson and
coworkers did not detect any changes in protein or mucin
composition in the cervical plug during the menstrual
cycle, but they did observe a relative increase in the ex-
pression of neutral fucosylated O-glycans during the ovu-
latory phase [70].

MS methods have also been employed to analyze the gly-
cans associated with specific uterine or decidual glycopro-
teins. Perhaps the best studied is glycodelin, a glycoprotein
of endometrial and decidual origin that was originally iso-
lated by Bohn from the placenta and designated PP14 [71].
The amniotic fluid specific form of glycodelin (GdA) was
originally shown to display several different immunomodu-
latory activities and the ability to block human sperm-ZP
binding in the hemizona assay system at low concentrations
[72-75]. Glycomic analysis revealed the presence of some
very unusual carbohydrate antennae on its N-glycans, such
as the fucosylated lacdiNAc sequence (GaINAcB1-4[Fucal-
3]GlcNAC) [75, 76]. Currently, there are several isoforms of
glycodelin that have been identified in the follicular fluid
(GdF), cumulus matrix (GdC) and seminal plasma (GdS).
Each form has its own specific glycosylation state and
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biological activities, though the protein component remains
unchanged [76].

Carson and coworkers demonstrated that [-estradiol
stimulated the incorporation of [*H]mannose into mouse
uterine glycoproteins by 3-6-fold without stimulating
protein synthesis [77]. This increased incorporation was
due to enhanced secretion of specific glycoproteins ra-
ther than changes in the glycan biosynthetic pathways.
This same group later demonstrated that polylactosami-
noglycans represent a major fraction of the total glyco-
conjugates synthesized by epithelial cells but not stromal
cells in the mouse uterus [78]. These glycans play a role
in cell adhesion processes involving this cell population.
The synthesis of these glycans was specifically stimulated
by estrogen [79].

Insightful MS analyses have been performed on mouse
uterine luminal fluid (ULF) glycoproteins. Glycomic ana-
lysis of lipocalin 2 (Lcn2, 24p3) revealed the presence of
multiple Lewis® and Lewis’ antenna on complex type
N-glycans at its only glycosylation site [80]. Lewis™, Lewis”
and terminal NeuAca2-6Gal sequences were predominant
in mouse ULF glycome. Several other glycoproteins car-
riers of these antenna were detected in ULF, including
abundant lactotransferrin. The exact physiological signifi-
cance of this unusual glycosylation pattern remains to be
determined.

Analysis of glycosyltransferase gene expression in the
human and mammalian uterus

Several groups have studied the expression of different
glycosyltransferase genes in the human and mammalian
uterus. Levesque et al. confirmed the expression of a
UDP-glucuronyltransferase gene in the human uterus by
employing an amplification method involving the reverse
transcriptase-polymerase chain reaction (RT-PCR) [81].
Kubushiro et al. demonstrated that the level of f1-4 galac-
tosyltransferase enzyme was highly elevated in human
endometrial cancer compared to normal endometrium by
employing both immunohistochemical approaches and
measurement of mRNA levels [82].

Lowe and coworkers employed a similar approach to
detect an «ol-2 fucosyltransferase (FUT1) in the mouse
uterus [83]. Tabak and coworkers confirmed the expres-
sion of a UDP-GalNAc:polypeptide N-acetylgalactosamin
yltransferase gene that plays a role in O-glycan synthesis
in the rat uterus [84]. Robertson and coworkers employed
quantitative real-time PCR (qPCR) in murine uterine epi-
thelial cells to demonstrate that al-2 fucosyltransferase
(FUT?2) expression in mouse uterine epithelial cells is reg-
ulated by leukemia inhibitory factor (LIF) and interleukin-
1B (IL-1B) secreted by macrophages [85].

Hormonal regulation of glycosyltransferase gene ex-
pression in the uterus has also been demonstrated.
Domino and Hurd employed LacZ expression in al-2
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fucosyltransferase (FUT2)-LacZ mice to demonstrate
estradiol-regulated endocervical glandular expression dur-
ing the estrous cycle, hormone replacement and pregnancy
[86]. Uchiyama and coworkers analyzed the expression pat-
tern of mRNAs for three hyaluronan synthases (HAS-1, -2,
and -3) in the uterine cervix of gravid mice. The expression
of HAS-1 and HAS-2 was inhibited by progesterone treat-
ment whereas HAS-3 was substantially increased [87]. Chu
and coworkers showed that the progesterone regulated ex-
pression of the gene for a specific p1-4 N-acetylgalactosa-
minyltransferase (B4GALNT2) was required from the time
of embryo implantation in mice [88]. Administration of
tamoxifen (an estrogen receptor a antagonist) to pregnant
mice on d15 resulted in reduce hyaluronan synthase 2
(HAS-2) gene expression in the cervix as quantified by
qPCR. This finding also correlated with an overall 50 % de-
crease in hyaluronan content, indicating that the expression
of this glycosaminoglycan is estrogen regulated [89].

Glycosylation and the implantation of human and
mammalian embryos

The mammalian embryo must successfully implant and
initiate placentation to obtain nutrients and establish gas
exchange. Successful implantation requires a receptive
uterine lining and the development of the embryo to the
blastocyst stage. The trophectodermal cells of the blasto-
cyst must bind to the luminal epithelial cells of the
uterus for implantation to proceed.

Initial implantation of the human embryo into the
uterine epithelium has also been proposed to depend on
carbohydrate recognition. Hey and Aplin initially re-
ported that sialyl-Lewis™ and sialyl-Lewis® are expressed
on MUC-1 in the human endometrium [90]. Fisher and
coworkers demonstrated that human trophoblasts ex-
press L-selectin, an adhesion molecule that is also
employed during lymphocyte extravasation from the vas-
culature [91]. They further reported that human uterine
epithelial cells increase their expression of selectin li-
gands (especially 6-sulfo-sialyl Le*) during the temporal
window of receptivity. This adhesive interaction is func-
tional, since human trophoblasts specifically bind to
beads coated with 6-sulfo-sialyl Le* but not to unrelated
carbohydrate ligands [91]. Carson and coworkers subse-
quently reported that MUC1 also binds to antibodies
specific for 6-sulfo-sialyl Lewis* (HECA-452, MECA-79),
suggesting a possible role for this mucin in blastocyst
implantation [92]. However, while useful, such studies
cannot provide precise information about the degree of
substitution with these carbohydrate sequences or po-
tential changes in presentation that occur during the re-
ceptive period of blastocyst implantation.

Many different cell adhesion molecules have been
associated with the implantation of the mouse embryo
[33]. There is compelling evidence that lectin-like
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interactions also play a role in this process. Lundblad
and coworkers initially demonstrated that a specific
milk oligosaccharide designated lacto-N-fucopentaose
I (LNE-1), but not other closely related oligosaccha-
rides inhibited the implantation of mouse embryos by
53 % at a millimolar concentration [93]. This finding
was correlated with the expression of LNF-1 on the
surface of the murine uterine endometrial epithelium
during pregnancy [94]. Another terminal sequence
that has been implicated in binding is the H type 1
antigen [93]. Its synthesis relies on the expression of
a specific estrogen dependent al-2 fucosyltransferase
[95]. The mRNA for this enzyme is elevated in the
preimplantation phase but decreases as implantation
proceeds. Intrauterine injection of monoclonal anti-
bodies directed against the Lewis” antigen also inhibits im-
plantation, but only if they are introduced just before this
process normally occurs [96]. As noted previously, results
obtained in a more recent study have confirmed that
Lewis” sequences are also profusely expressed on murine
uterine luminal fluid glycoproteins [80].

The isolation and characterization of galectins with
different carbohydrate binding specificities led to the
concept that there is a glycocode that directs appro-
priate functions under different physiological states in
complex organisms [97, 98]. Subsequent experiments
support the hypothesis that there is the specific recogni-
tion of a glycocode that functions during the implantation
of the mammalian embryo. Jones and Aplin noted that
each mammalian species has its own unique pattern of
glycosylation of the maternal uterine epithelium based on
lectin binding, which they designated as a glycotype [5].
These investigators pointed out that the uterine glycotypes
are very similar in cases where interspecies mating results
in successful implantation and the development of viable
hybrids (horse and donkey, llama and guanaco). They sug-
gest that hybrid embryos are able to implant and develop
based partially on their recognition of the shared glycans
on the uterine epithelium, i.e., the glycocode [5].

Analysis of human trophoblast glycosylation

Though not actually a part of the uterus, the placenta
functions to provide vital nutrients and gas exchange to
support the developing eutherian during pregnancy. The
placental cells that make intimate contact with the uter-
ine lining are known as trophoblasts. In addition to pro-
viding this vital support, these cells are also crucial for
establishing an immunological barrier that protects the
histoincompatible fetus from the maternal immune re-
sponse. Because of their importance and relationships to
pathological pregnancy states in humans, trophoblasts
have been subjected to many different types of biochem-
ical analyses, including lectin binding studies.



Clark Fertility Research and Practice (2015) 1:17

Perhaps the most extensive lectin binding analysis of
human trophoblasts obtained from term placenta was
carried out by Jones and her colleagues [99]. The results
of this study are summarized in Table 4. Ezaki and co-
workers also analyzed the binding of a panel of lectins to
human trophoblasts [100]. However, these investigators
reported much lower binding of ConA, E-PHA and LCA
to trophoblasts compared to the findings reported by
Jones and coworkers.

At this time, the assignment of any specific functional
roles for human trophoblast glycans is purely specula-
tive because of the lack of hard evidence. However, one
potential role that such glycans could play involves im-
mune recognition. Human syncytiotrophoblast (STB)
come into direct physical contact with uterine NK cells
during the early stage of implantation. NK cells are

Table 4 Lectin staining of human trophoblast Domains®

Lectin® Microvillous membrane/ Trophoblast/ Basal plasma
apical cytoplasm basal cytoplasm  membrane/lamina

ConA 4 3 3
PSA 4 3 3
E-PHA 4 3 3
L-PHA 2 0 0
ALA 4 2-3 3
DBA 0 0 0
MPA 4 2 2
DSA 4 3 3
STA 4 2-4 2-4
LEA 1-2 0 2-3
HPA 1 0 0
AHA 0-1 0 0
AHA 4 1 1-2
+N
ECA 0-1 0 0
ECA + 4 2 2-3
N
SBA 0 0 0
SBA + 1 0 0
N
WFA 0 0 0
SNA 0-1 0 0
MAA 4 1 1-2
PAA 0-1 0 1-2
PAA + 2 0 3
N
WGA 4 2-3 2-4
WGA 1-2 0 1-2
+N

Staining: 0 = negative; 1 = week; 2 = moderate; 3 = strong; 4 = intense
PThis table was adapted from data reported in [90]
“+ N indicates digestion with neuraminidase before lectin staining
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specifically sequestered to the implantation site by
MIP-1q, a cytokine secreted by STB [101]. STB on the
surface of the placental villi also come into direct con-
tact with immune effector cells in the maternal blood.
STB lack human leukocyte antigens (HLA), thus likely
avoiding alloimmune responses [102, 103]. However, they
encounter circulating maternal natural killer (NK) cells at
the villous interface. The lack of HLA class I proteins
could potentially put them at risk for cytolysis, but
only if they express the appropriate NK cell activating
ligands [104, 105].

Of even greater potential immune consequence is the
expression of paternal HLA-C by extravillous cytotro-
phoblasts that invade the decidua and the myometrium
[102, 103, 106]. How a powerful histocompatibility-
based response directed against this type of trophoblast
is avoided during pregnancy is currently unknown. In
addition, no studies have demonstrated that differential
glycosylation of HLA class I molecules could lead to the
evasion of this type of immune response. Clearly, ultra-
sensitive MS analysis of trophoblast populations in the
human placenta combined with other functional studies
will be useful for determining if glycosylation plays any
functional role in the immune deviations that occur dur-
ing these interactions.

Analysis of mammalian trophoblast glycosylation

Trophoblasts and trophectodermal cells from many
other species have also been subjected to staining with
lectins to analyze glycan expression and detect differ-
ences between species. Jones and coworkers performed
lectin binding analysis of trophoblasts isolated from
humans and four other species that employ hemochorial
implantation (lesser hedgehog tenrec (Echinops telfairi),
spotted hyena (Crocuta crocuta), nine-banded armadillo
(Dasypus novemcinctus), and guinea pig (Cavia porcellus))
[99]. These investigators noted that the glycosylation pat-
terns were similar to each other and to human tropho-
blasts, with only minor differences. They suggested that
these findings were evidence for convergent evolution
[99]. Lectin binding studies have also been performed on
trophoblasts from many other mammalian species. These
studies are presented in tabular form in Table 5. The
intraepithelial binucleate cells present in ruminants have
often been the focus of many of these other investigations.

Glycosylation and the development of the great
obstetrical syndromes

The Great Obstetrical Syndromes are of the utmost con-
cern for the practicing obstetrician [107]. The existing
data indicate that these syndromes are due to defects in
deep implantation. Perhaps one of the most puzzling of
these syndromes is preeclampsia (PE). The thoughtful
obstetrician Jeffcoate referred to PE as “the Disease of
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Table 5 Analysis of lectin binding to mammalian trophoblasts

Common Name Species Reference
African elephant Loxodonta africana [114]
Alpaca Lama pacos [115]
Bovine Bos Taurus [116]
Cama (camel/alpaca hybrid) [115]
Camel Camelus dromedaries [115]
Chimpanzee Pan troglodytes [117]
Chinese water deer Hydropotes inermis inermis [118]
Collared peccary Tayassu tajacu [119]
Domestic cat Felis catus [60]
Domestic goat Capra aegagrus hircus [118]
Domestic pig Sus scrofa [119]
Egyptian slit-faced bat Nycteris thebaica [120]
Fallow deer Dama dama [118]
Giraffe Giraffa camelopardalis [121
Greater malayan chevrotain Tragulus napu [118]
Guinea pig Cavis porcellus [90]
Hottentot golden mole Amblysomus hottentotus [122]

Horse Equus ferus caballus [123, 124]
Impala Aepyceros melampus [98]
Lesser hedgehog tenrec Echinops telfairi [99]
Lowland gorilla Gorilla gorilla gorilla [125]
Mink Mustela vison [126]

Mouse Mus musculus [66, 127]
Nine-banded armadillo Dasypus novemcinctus [90]
Okapi Okapia johnstoni [121
Red deer Cervus elaphus [118]
Sheep Ovis aries [116]
Spotted hyena Crocuta crocuta [99]
Springbok Antidorcas marsupialis [118]
Tammar wallaby Macropus eugenii [59]
Water buffalo Bubalus bubalis [128]

White-lipped peccary

Tayassu pecari

Theories” because of the numerous research challenges
associated with this pathological condition [108]. This
disorder can be broadly divided into two classes, some-
times referred to as maternal and placental, though in
some cases a mixture of the two types is observed
[109, 110]. Placental PE is the result of poor placentation
during early pregnancy. PE has been hypothesized to be
the result of: (i) a disruption of vascular remodeling lead-
ing to hypoxia; and/or (ii) an aberrant immune response
directed against the allogeneic fetus [111]. There is strong
evidence indicating that both processes play crucial roles
in the clinical manifestation of PE.
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Sgambati and coworkers previously analyzed the distri-
bution of sugar residues in human placentas from un-
complicated pregnancies and those affected by different
hypertensive disorders (pregnancy-induced hypertension
(PIH), PE, PE with hemolysis, elevated liver enzymes and
low platelets (HELLP) syndrome) [112]. They employed
ConA, WGA, PNA, SBA, DBA, UEA, GNA, DSA, MAA
and DSA in combination with other chemical and enzym-
atic treatments to perform this analysis. They reported a
40 % increase in ConA binding to STB and CTB in pla-
centas derived from patients that developed PE or PE with
HELLP syndrome compared to TB derived from women
that developed pregnancy-induced hypertension or that
delivered without complications. No binding sites for
DBA or SBA were detected on STB and CTB in the pla-
centas of patients with uncomplicated deliveries. However,
substantial binding of these lectins was observed on STB
and CTB associated with the placentas of patients that de-
veloped PIH, PE or PE with HELLP syndrome. Binding
sites for SNA were expressed on STB from the placentas
of patients that developed PE with HELLP, but not on TB
from any other patient group analyzed in this study [112].
Clearly, these results indicate that a shift in glycosylation
is occurring during the development of these obstetrical
syndromes, but how these changes impact this condition
remains to be defined.

Potential shifts in glycosylation have recently been
indicated during the development of preterm birth.
Integrin B1 was isolated from villous samples obtained 6—9
weeks of gestation from placentas obtained from early
spontaneous miscarriage and normal controls [113].
Binding of L-PHA, a lectin that specifically recognizes
N-glycans bearing the GalPl-4GIcNAcBl-6 Man se-
quence was decreased in integrin samples isolated from
patients that experienced a miscarriage compared to con-
trols. By contrast, the level of binding of E-PHA to integ-
rin Bl substantially increased in samples derived from
miscarriage patients compared to normal pregnancies.
These shifts in glycosylation were correlated with the
level of the N-acetylglucosaminyltransferase enzymes
known as Mgat 5 and GnT-III that add P1-6 linked
and the bisecting GIcNAc to the trimmanosyl core of
N-glycans, respectively [113]. Whether these shifts in
glycosylation play a role in the development of pre-
term birth remains to be defined.

Conclusions

Many studies have focused considerable effort on de-
fining glycosylation in the mammalian uterus and pla-
centa. Nonetheless, the functional roles of glycans have
not been explicitly defined. Studies focused in this area
could be extremely valuable in the human, where the
cause of many of the Great Obstetrical Syndromes remain
enigmatic [107]. Though powerful methods of both



Clark Fertility Research and Practice (2015) 1:17

genetic and epigenetic analysis are currently available to
analyze uterine and trophoblast function, no definitive
cause of these major obstetrical syndromes has been
determined. Evidence is now available indicating that the
glycosylation of STB and CTB are undergoing substantial
changes during the development of hypertensive disorders
of pregnancy including PIH, PE and PE with HELLP
syndrome [112]. Shifts in the glycosylation of B1 integrin
have been detected in the placentas of women who de-
veloped preterm birth [113]. The time has now come to
employ biochemical and ultrasensitive MS tool to analyze
the pathways for glycosylation in the uterus in both the
pregnant and nonpregnant women during both normal
and aberrant physiological states. The possibility that aber-
rant glycosylation could play a major role in the develop-
ment of the Great Obstetrical Syndromes should now be
seriously considered.
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