Csapo A, Pulkkinen M, Ruttner B, Sauvage J, Wiest W. The significance of the human corpus luteum in pregnancy maintenance: preliminary studies. Am J Obstet Gynecol. 1972;112(8):1061–7.
Article
CAS
Google Scholar
Csapo A, Pulkkinen M, Wiest W. Effects of luteectomy and progesterone replacement therapy in early pregnant patients. Am J Obstet Gynecol. 1973;115(6):759–65.
Article
CAS
Google Scholar
Csapo A, Pulkkinen M, Kaihola H. The effect of estradiol replacement therapy on early pregnant luteectomized patients. Am J Obstet Gynecol. 1973;117(7):987–90.
Article
CAS
Google Scholar
DiLuigi AJ, Nulsen JC. Effects of gonadotropin-releasing hormone agonists and antagonists on luteal function. Curr Opin Obstet Gynecol. 2007;19(3):258–65.
Article
Google Scholar
Smitz J, Devroey P, Camus M, Deschacht J, Khan I, Staessen C, et al. The luteal phase and early pregnancy after combined GnRH-agonist/HMG treatment for superovulation in IVF or GIFT. Hum Reprod. 1988;3(5):585–90.
Article
CAS
Google Scholar
Garcia J, Jones GS, Acosta AA, Wright GL. Corpus luteum function after follicle aspiration for oocyte retrieval. Fertil Steril. 1981;36(5):565–72. Elsevier Masson SAS. https://doi.org/10.1016/S0015-0282(16)45852-8.
Frydman R, Testart J, Giacomini P, Imbert MC, Martin E, Nahoul K. Hormonal and histological study of the luteal phase in women following aspiration of the preovulatory follicle. Fertil Steril. 1982;38(3):312–7.
Article
CAS
Google Scholar
Yanushpolsky E. Evidence-based use of progesterone during IVF. In: Racowsky C, Schlegel P, Fauser B, Carrell D, editors. Biennial review of infertility. Boston: Springer; 2011. p. 79–90.
Chapter
Google Scholar
van der Linden M, Buckingham K, Farquhar C, Kremer JAM, Metwally M. Luteal phase support for assisted reproduction cycles. Cochrane Database Syst Rev. 2015;7:CD009154.
Google Scholar
Nahoul K, Dehennin L, Jondet M, Roger M. Profiles of plasma estrogens, progesterone and their metabolites after oral or vaginal administration of estradiol or progesterone. Maturitas. 1993;16(3):185–202.
Article
CAS
Google Scholar
Simon J, Robinson D, Andrews M, Hildebrand J III, Rocci M Jr, Blake R, et al. The absorption of oral micronized progesterone: the effect of food, dose proportionality, and comparison with intramuscular progesterone. Fertil Steril. 1993;60(1):26–33.
Article
CAS
Google Scholar
Besins Healthcare (UK) Ltd. Utrogestan 100 mg capsules Summary of Product Characteristics. 2017.
Google Scholar
Yanushpolsky E, Hurwitz S, Greenberg L, Racowsky C, Hornstein M. Crinone vaginal gel is equally effective and better tolerated than intramuscular progesterone for luteal phase support in in vitro fertilization-embryo transfer cycles: a prospective randomized study. Fertil Steril. 2010;94(7):2596–9.
Article
CAS
Google Scholar
Schoolcraft WB, Hesla JS, Gee MJ. Experience with progesterone gel for luteal support in a highly successful IVF programme. Hum Reprod. 2000;15(6):1284–8.
Article
CAS
Google Scholar
Dal Prato L, Bianchi L, Cattoli M, Tarozzi N, Flamigni C, Borini A. Vaginal gel versus intramuscular progesterone for luteal phase supplementation: a prospective randomized trial. Reprod BioMed Online. 2008;16(3):361–7.
Article
CAS
Google Scholar
Kahraman S, Karagozoglu SH, Karlikaya G. The efficiency of progesterone vaginal gel versus intramuscular progesterone for luteal phase supplementation in gonadotropin-releasing hormone antagonist cycles: a prospective clinical trial. Fertil Steril. 2010;94(2):761–3.
Article
CAS
Google Scholar
Silverberg KM, Vaughn TC, Hansard LJ, Burger NZ, Minter T. Vaginal (Crinone 8%) gel vs. intramuscular progesterone in oil for luteal phase support in in vitro fertilization: A large prospective trial. Fertil Steril. 2012;97(2):344–8.
Article
CAS
Google Scholar
Zarutskie PW, Phillips JA. A meta-analysis of the route of administration of luteal phase support in assisted reproductive technology: vaginal versus intramuscular progesterone. Fertil Steril. 2009;92(1):163–9.
Article
CAS
Google Scholar
Mitwally MF, Diamond MP, Abuzeid M. Vaginal micronized progesterone versus intramuscular progesterone for luteal support in women undergoing in vitro fertilization-embryo transfer. Fertil Steril. 2010;93(2):554–69.
Article
CAS
Google Scholar
Khan N, Richter KS, Newsome TL, Blake EJ, Yankov VI. Matched-samples comparison of intramuscular versus vaginal progesterone for luteal phase support after in vitro fertilization and embryo transfer. Fertil Steril. 2009;91(6):2445–50.
Article
CAS
Google Scholar
Glujovsky D, Pesce R, Fiszbajn G, Sueldo C, Hart R, Ciapponi A. Endometrial preparation for women undergoing embryo transfer with frozen embryos or embryos derived from donor oocytes. Cochrane Database Syst Rev. 2010;1:CD006359.
Google Scholar
Lightman A, Kol J. Itskovitz-Eldor. A prospective randomized study comparing intramuscular with intravaginal natural progesterone in programmed thaw cycles. Hum Reprod. 1999;14(10):2596–9.
Article
CAS
Google Scholar
Shapiro DB, Pappadakis JA, Ellsworth NM, Hait HI, Nagy ZP. Progesterone replacement with vaginal gel versus i.m. injection: cycle and pregnancy outcomes in IVF patients receiving vitrified blastocysts. Hum Reprod. 2014;29(8):1706–11.
Article
CAS
Google Scholar
Haddad G, Saguan DA, Maxwell R, Thomas MA. Intramuscular route of progesterone administration increases pregnancy rates during non-downregulated frozen embryo transfer cycles. J Assist Reprod Genet. 2007;24(10):467–70.
Article
Google Scholar
Kaser DJ, Ginsburg ES, Missmer SA, Correia KF, Racowsky C. Intramuscular progesterone versus 8% Crinone vaginal gel for luteal phase support for day 3 cryopreserved embryo transfer. Fertil Steril. 2012;98(6):1464–9.
Article
CAS
Google Scholar
Mackens S, Santos-Ribeiro S, van de Vijver A, Racca A, Van Landuyt L, Tournaye H, et al. Frozen embryo transfer: a review on the optimal endometrial preparation and timing. Hum Reprod. 2017;32(11):1–9.
Article
Google Scholar
Devine K, Richter KS, Widra EA, McKeeby JL. Vitrified blastocyst transfer cycles with the use of only vaginal progesterone replacement with Endometrin have inferior ongoing pregnancy rates: results from the planned interim analysis of a three-arm randomized controlled noninferiority trial. Fertil Steril. 2018;109(2):266–75.
Article
CAS
Google Scholar
Cheung LP, Lam PM, Lok IH, Chiu TTY, Yeung SY, Tjer CC, et al. GnRH antagonist versus long GnRH agonist protocol in poor responders undergoing IVF: a randomized controlled trial. Hum Reprod. 2005;20(3):616–21.
Article
CAS
Google Scholar
Dragisic K, Davis O, Fasouliotis S, Rosenwaks Z. Use of a luteal estradiol patch and a gonadotropin-releasing hormone antagonist suppression protocol before gonadotropin stimulation for in vitro fertilization in poor responders. Fertil Steril. 2005;84(4):1023–6.
Article
CAS
Google Scholar
Tummon I, Daniel S, Kaplan B, Nisker J, Yuzpe A. Randomized, prospective comparison of luteal leuprolide acetate and gonadotropins versus clomiphene citrate and gonadotropins in 408 first cycles of in vitro fertilization. Fertil Steril. 1992;58(3):563–8.
Article
CAS
Google Scholar
Surrey ES, Bower J, Hill D, Ramsey J, Surrey MW. Clinical and endocrine effects of a microdose GnRH agonist flare regimen administered to poor responders who are undergoing in vitro fertilization. Fertil Steril. 1998;69(3):419–24.
Article
CAS
Google Scholar
Racowsky C, Vernon M, Mayer J, Ball GD, Behr B, Pomeroy KO, et al. Standardization of grading embryo morphology. J Assist Reprod Genet. 2010;27(8):437–9.
Article
Google Scholar
Mickey R, Greenland S. The impact of confounder selection criteria on effect estimation. Am J Epidemiol. 1989;129(1):125–37.
Article
CAS
Google Scholar
SAS Institute Inc. SAS Software Version 9.4. 2013.
Google Scholar
Kolb BA, Paulson RJ. The luteal phase of cycles utilizing controlled ovarian hyperstimulation and the possible impact of this hyperstimulation on embryo implantation. Am J Obstet Gynecol. 1997;176(6):1262–9.
Article
CAS
Google Scholar
Blake EJ, Norris PM, Dorfman SF, Longstreth J, Yankov VI. Single and multidose pharmacokinetic study of a vaginal micronized progesterone insert (Endometrin) compared with vaginal gel in healthy reproductive-aged female subjects. Fertil Steril. 2010;94(4):1296–301.
Article
CAS
Google Scholar